-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Hi
I fixed the english terminology, according to the justifications by Regina.
regards
Olivier
Em 31-01-2012 11:28, Regina Henschel escreveu:
Olivier Hallot schrieb:
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Hi Regina
It has been decades since I handled groups, rings, fields, and functions
in my french lycée. Now I am confused because it looks like the two
terms are swapped between french and english...
Regards
Olivier
In french:
http://fr.wikipedia.org/wiki/Cos%C3%A9cante#Fonctions_r.C3.A9ciproques
in English
http://en.wikipedia.org/wiki/Inverse_%28mathematics%29
A better reference for Engish is
http://en.wikipedia.org/wiki/Sine#Reciprocal
The topic here are functions, not numbers.
For numbers you have the term "additive inverse of x is -x" or
"multiplicative inverse of x is 1/x". But in context of functions
"inverse" always means the inverse in respect to composition.
I don't know French. Astonishing, http://en.wikipedia.org/wiki/Sine has
no direct translation to French.
Kind regards
Regina
_______________________________________________
LibreOffice mailing list
LibreOffice@lists.freedesktop.org
http://lists.freedesktop.org/mailman/listinfo/libreoffice
- --
Olivier Hallot
Founder, Board of Directors Member - The Document Foundation
LibreOffice translation leader for Brazilian Portuguese
+55-21-8822-8812
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
Comment: Using GnuPG with Mozilla - http://enigmail.mozdev.org/
iQEcBAEBAgAGBQJPKBklAAoJEJp3R7nH3vLxC7sIAIgLiitUH2qEH8ghN3HyatbZ
FHLJRXgDVmF002fOeG1CUyjETCdr2i4ZC0zD7hr+/6PK2u16tR1ZRIY0Mq0VNe2f
KWso+ZWFJRvas7hnwAqjJJjBNpWZ2wvHfg+9I8kMxo6FKoVBgB4vjjonD+NTQ5hr
g5trt6Y0jov5aCFvcAXPE4JphNkVh/W1uWq0/apbkwjKppoaz/0L+R6XDZ2YYvbS
xc/hlFEkhlaSzCMY6ULMSHO7y93pWu1Fk2INgcVm44wpLAenBRzJsCeH+bPvRbSZ
y+r+QKPrYRhII/xxqKfWz4vgm5RThK2iQ0UMqloyr4u7ZAKXRMuY1DRe1Q5d8es=
=mSq+
-----END PGP SIGNATURE-----
From 182098d2b8a625e8da97193ec627a1cd5a580e6c Mon Sep 17 00:00:00 2001
From: Olivier Hallot <olivier.hallot@alta.org.br>
Date: Tue, 31 Jan 2012 14:35:04 -0200
Subject: [PATCH] fix for fdo#44972, LOCALHELP for CSC,CSCH,SEC,SECH
fix function terminology.
---
helpcontent2/source/text/scalc/01/04060106.xhp | 15 +++++++--------
1 files changed, 7 insertions(+), 8 deletions(-)
diff --git a/helpcontent2/source/text/scalc/01/04060106.xhp
b/helpcontent2/source/text/scalc/01/04060106.xhp
index a272e1d..e80b11f 100644
--- a/helpcontent2/source/text/scalc/01/04060106.xhp
+++ b/helpcontent2/source/text/scalc/01/04060106.xhp
@@ -341,7 +341,7 @@ ACOSH, ASINH, ATANH, ACOTH, </comment>
<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_COSECANT" id="bm_id5645316" localize="false"/>
<paragraph xml-lang="en-US" id="hd_id9523234" role="heading" level="2" l10n="U"
oldref="149">CSC</paragraph>
-<paragraph xml-lang="en-US" id="par_id4896433" role="paragraph" l10n="CHG" oldref="150"><ahelp
hid="HID_FUNC_COSECANT">Returns the cosecant of the given angle (in radians). The cosecant is the
inverse of the sine (= 1/sin(x))</ahelp></paragraph>
+<paragraph xml-lang="en-US" id="par_id4896433" role="paragraph" l10n="CHG" oldref="150"><ahelp
hid="HID_FUNC_COSECANT">Returns the cosecant of the given angle (in radians). The cosecant of an
angle is equivalent to 1 divided by the sine of that angle</ahelp></paragraph>
<paragraph xml-lang="en-US" id="hd_id3534032" role="heading" level="3" l10n="U"
oldref="151">Syntax</paragraph>
<paragraph xml-lang="en-US" id="par_id4571344" role="code" l10n="U"
oldref="152">CSC(Number)</paragraph>
@@ -365,12 +365,11 @@ oldref="159">CSCH</paragraph>
<paragraph xml-lang="en-US" id="hd_id5336768" role="heading" level="3" l10n="U"
oldref="161">Syntax</paragraph>
<paragraph xml-lang="en-US" id="par_id3108851" role="code" l10n="U"
oldref="162">CSCH(Number)</paragraph>
-<paragraph xml-lang="en-US" id="par_id1394188" role="paragraph" l10n="CHG" oldref="163">Returns
the hyperbolic cosecant of <emph>Number</emph>. The hyperbolic cosecant is the inverse of the
hyperbolic sine (= 1/sinh(x)) </paragraph>
+<paragraph xml-lang="en-US" id="par_id1394188" role="paragraph" l10n="CHG" oldref="163">Returns
the hyperbolic cosecant of <emph>Number</emph>.</paragraph>
<paragraph xml-lang="en-US" id="hd_id6037477" role="heading" level="3" l10n="U"
oldref="164">Example</paragraph>
<paragraph xml-lang="en-US" id="par_id5426085" role="paragraph" l10n="CHG" oldref="165">
-<item type="input">=CSCH(1)</item> returns approximately 0.8509181282, the hyperbolic cosecant of
1.</paragraph><comment>see also SINH, TANH, COTH, SECH,
-ACOSH, ASINH, ATANH, ACOTH, </comment>
+<item type="input">=CSCH(1)</item> returns approximately 0.8509181282, the hyperbolic cosecant of
1.</paragraph><comment>see also SINH, TANH, COTH, SECH,ACOSH, ASINH, ATANH, ACOTH, </comment>
</section>
<section id="Section48">
<bookmark xml-lang="en-US" branch="index" id="bm_id3145314"><bookmark_value>DEGREES
function</bookmark_value>
@@ -977,7 +976,7 @@ CEILING, FLOOR, EVEN, ODD, MROUND</comment>
<bookmark xml-lang="en-US" branch="hid/SC_HID_FUNC_SECANT" id="bm_id6577644" localize="false"/>
<paragraph xml-lang="en-US" id="hd_id5187204" role="heading" level="2" l10n="U"
oldref="149">SEC</paragraph>
-<paragraph xml-lang="en-US" id="par_id9954962" role="paragraph" l10n="CHG" oldref="150"><ahelp
hid="HID_FUNC_SECANT">Returns the secant of the given angle (in radians). The secant is the inverse
of the cosine (= 1/cos(x))</ahelp></paragraph>
+<paragraph xml-lang="en-US" id="par_id9954962" role="paragraph" l10n="CHG" oldref="150"><ahelp
hid="HID_FUNC_SECANT">Returns the secant of the given angle (in radians). The secant of an angle is
equivalent to 1 divided by the cosine of that angle</ahelp></paragraph>
<paragraph xml-lang="en-US" id="hd_id422243" role="heading" level="3" l10n="U"
oldref="151">Syntax</paragraph>
<paragraph xml-lang="en-US" id="par_id2055913" role="code" l10n="U"
oldref="152">SEC(Number)</paragraph>
@@ -989,7 +988,7 @@ oldref="154">Examples</paragraph>
<item type="input">=SEC(PI()/4)</item> returns approximately 1.4142135624, the inverse of the
cosine of PI/4 radians.</paragraph>
<paragraph xml-lang="en-US" id="par_id3954287" role="paragraph" l10n="U" oldref="156">
<item type="input">=SEC(RADIANS(60))</item> returns 2, the secant of 60
degrees.</paragraph><comment>see also SIN, TAN, COT, CSC,
-ACOS, ASIN, ATAN, ATAN2, ACOT </comment>
+ACOS, ASIN, ATAN, ATAN2, ACOT</comment>
</section>
<section id="Section65">
<bookmark xml-lang="en-US" branch="index" id="bm_id840005"><bookmark_value>SECH
function</bookmark_value>
@@ -1001,12 +1000,12 @@ oldref="159">SECH</paragraph>
<paragraph xml-lang="en-US" id="hd_id875988" role="heading" level="3" l10n="U"
oldref="161">Syntax</paragraph>
<paragraph xml-lang="en-US" id="par_id4985391" role="code" l10n="U"
oldref="162">SECH(Number)</paragraph>
-<paragraph xml-lang="en-US" id="par_id1952124" role="paragraph" l10n="CHG" oldref="163">Returns
the hyperbolic secant of <emph>Number</emph>. The hyperbolic secant is the inverse of the
hyperbolic cosine (= 1/cosh(x)) </paragraph>
+<paragraph xml-lang="en-US" id="par_id1952124" role="paragraph" l10n="CHG" oldref="163">Returns
the hyperbolic secant of <emph>Number</emph>.</paragraph>
<paragraph xml-lang="en-US" id="hd_id9838764" role="heading" level="3" l10n="U"
oldref="164">Example</paragraph>
<paragraph xml-lang="en-US" id="par_id1187764" role="paragraph" l10n="CHG" oldref="165">
<item type="input">=SECH(0)</item> returns 1, the hyperbolic secant of 0.</paragraph><comment>see
also SINH, TANH, COTH, CSCH,
-ACOSH, ASINH, ATANH, ACOTH, </comment>
+ACOSH, ASINH, ATANH, ACOTH</comment>
</section>
<section id="Section18">
<bookmark xml-lang="en-US" branch="index" id="bm_id3144877"><bookmark_value>SIN
function</bookmark_value>
--
1.7.5.4
Context
Privacy Policy |
Impressum (Legal Info) |
Copyright information: Unless otherwise specified, all text and images
on this website are licensed under the
Creative Commons Attribution-Share Alike 3.0 License.
This does not include the source code of LibreOffice, which is
licensed under the Mozilla Public License (
MPLv2).
"LibreOffice" and "The Document Foundation" are
registered trademarks of their corresponding registered owners or are
in actual use as trademarks in one or more countries. Their respective
logos and icons are also subject to international copyright laws. Use
thereof is explained in our
trademark policy.