
Project Proposal – GSoC 2014

Haskell UNO Language Binding
LibreOffice - Document Foundation

Tharindu Lakmal Muthugama
University ID - 100347U

University of Moratuwa (3rd year undergraduate)
Sri Lanka

Introduction

UNO (Universal Network Objects) project was developed to implement a Component Model like
architecture for the LibreOffice. The services offered by the LibreOffice core is accessible through
the Binary UNO API and the UNO Remote Protocol as well.

The communication between components can be described using the UNO IDL (Interface
Definition Language). Currently various language bindings for the UNO API is available. These
Bridges are available for C++, Java, Python. This Project's objective is to build a similar bridge for
the Haskell Programming Language.

C++ Binding

Binary UNO can be directly accessed through the C++ Language.

Java Binding

Java language Bridges with Binary UNO via JNI

Python

Python Language Bridges with the Binary UNO via the pyuno bridge

URP Bridge

URP is available to bridge with any other implementation

Proposed implementation for the Haskell

A purely Haskell implementation is proposed to handle the URP and invoke the services available.

Binary UNO

Binary UNO JNI Java Interface

PyUNOBinary UNO Python
Interface

URPBinary UNO

Binary UNO URP Haskell

Design Details of The Project

The Haskell binding communicates with BinaryUNO through a connection adapter. The Messages
communicated via the connection adapter will be translated between Haskell Language via the
modules URP2Haskell and Haskell2URP.

The Runtime implementation module will communicate with the other processes in the
environment. The integration to the LibreOffice will also considered as a separate phase.

A utility Module is used to get services required in the implementation. Eg. Logging

The design, documentation and testing work will also be carried out parallel to the coding. The
work break down for the project is defined below.

Tasks of The Project (Work Break Down)

1. Familiar with the UNO Model thoroughly
- Illustrate the Java UNO Bridge using UML
- Illustrate the python UNO Bridge using UML

2. Familiar with the Haskell language thoroughly
- Implement a basic communication protocol

Haskell Binding

Binary UNO Connection
Adapter

URP2Haskell

Haskell2URP

Haskell
Interface

Platform Related and runtime
implementations

Integration to the LibreOffice

Utility Module

3. Familiar with the UNO RPC Bridge using UML
- Gather details about RPC Protocol
- Gather details about UNO IDL

4. Write the Connectivity part from Haskell
- Access the URP Port and get replies
- Experiment with the URP with the specifications given

5. Implement the URP Adapter from Haskell to receive messages
- Documentation about the implementation
- Implement
- Develop test cases and test

6. Implement the Haskell2URP Module
- Documentation about the implementation
- Implement
- Develop test cases and test

7. Implement the URP2Haskell Module
- Documentation about the implementation
- Implement
- Develop test cases and test

8. Integration of Adapter and URP2Haskell and Haskell2URP Module
- Documentation about the implementation
- Implement
- Develop test cases and test

9. Implement the Platform related and Runtime implementation
- Documentation about the implementation
- Implement
- Develop test cases and test

10. Integration and Refactoring
- Documentation about the implementation
- Integration
- Refactoring

11. Integration Testing
- Develop Test Cases
- Testing

12. Documentation and Develop sample projects using the language binding
- Documentation about the implementation
- Develop Tutorials to code with Haskell Language Binding

Utility Module will be developed throughout the entire project period since it is added the required
utility methods at the point of implementation.

Time line

Period Task Description Other Calendars

10th March – 21st March Preparing The Project Proposal
Get involved in the Development
community
Bug fixing

21st March – 18th April Task 1
Task 2

Bug Fixing to get the knowledge
about code base. Task 1 and Two will
provide thorough domain knowledge
about UNO and Haskell.

21st April – 19th May Task 2
Task 3
Task 4

Task 2 and Task 3 will provide a
better design and preparation for the
project by familiarizing more to an
environment where RPC, UNO and
Haskell is involving.

19th May – 26th May Task 5 The connection adapter provides the
services offered by the BinaryUNO.
Which will be needed in order to
work ahead. Hence it is implemented
as the first module.

14th - 23rd May – End of
Semester 6 (evaluation
will be held within a
day in that period)
26th May – Semester 7
starts

26th May – 2nd June Task 5,6 The continuation of the Task 5. The
Haskell2URP module will be
implemented.

3rd June – 9th June Task 6 Continue the implementation of Task
6

10th June – 16th June Task 6,7 Continue the Task 6. Start
implementing the URP2Haskell
Module

17th June – 23rd June Task 7 Continue the URP2Haskell

24th June – 27th June Mid Term Evaluation and get
feedbacks about the implementation
and discuss about future work.

28th June – 5th July Task 8 Integrating the previously
implemented modules and develop
test cases in order to continue with a
working and tested code.

19th July – 28th July
(Mid semester exams
will be held within the
period)

6th July – 12th July Task 8,9 Continue the Task 8 . The platform
related and runtime implementations
will be handled after that.

13th July – 19th July Task 9 The task 9 will be continued.

20th July – 26th July Task 10 Integration to the LibreOffice and
refactoring of the code.

27th July – 3rd July Task 11 Integration Testing. End to End test
cases will be developed.

4th July – 10th July Task
11,12

Continue Task 11. Some Example
projects will be implemented using
the developed Language Binding.
This will be focused on better
documentation in order to remove the
obstacles for future developers and
third party developers.

11th July – 17th July Task 12 Continue the Task 12.

18th August – 22nd
August

Final Evaluation

22nd August – 25th
August

Submitting required code samples

Alternative Approach

Use Haskell Foreign Function Interface to invoke the services in BinaryUNO

Sample code

module Example1 where
import Foreign.C

foreign import ccall "cot" hask_cot :: CDouble -> CDouble

Above hask_cot method will be bounded to the cot method in Math.h C header file. Similarly the
Haskell methods will be created to invoke a UNOHaskell Bridge similar to PyUNO.

About The Applicant

Name : Tharindu Lakmal Muthugama
Date of Birth : 3rd July 1990
University : University of Moratuwa
Melange Handle Name : tmtlakmal
IRC Nick name : tmtlakmal
E – mail : tmtlakmal@gmail.com
Linkedin : http://www.linkedin.com/pub/tharindu-lakmal-muthugama/56/441/804
Blog : http://tmtlakmal.wordpress.com/
GitHub : https://github.com/tmtlakmal

I have written engaged in coding for few years. My programming career started from
the C Language. Then it was changed to Java. After several assignments in the

Binary UNO
Foreign
Function
Interface

Haskell

mailto:tmtlakmal@gmail.com

university I was able to develop a java application related to Google Maps. The
experience I gained through the Tank Game Project with Java and the Database
Project with CakePHP framework motivated me a lot into learn new technologies.

The quiz system project I built for Labnoir Pvt Ltd improved my confidence of
learning new technologies. Though both MongoDB and the Dart Programming
Language was new to me at that time I was able to manage and finish the project
successfully.

I wrote blog posts regarding python macros in LibreOffice which I experienced
while doing the EasyTute LibreOffice Project which is to get solutions from Wolfram
Alpha Math Engine for the equations type in LibreOffice Writer. That became the
first experience with UNO and Python Language. As I have worked with UNO API it
made me easier to get the understanding about the Language Binding
implementations for Java and Python.

Currently I'm fixing LibreOffice bugs , implementing several Haskell mini projects
and exploring the source codes of URP, JniUNO and PyUNO in order to gain
thorough knowledge for the success of this project.

References

1. https://wiki.openoffice.org/wiki/PyUNO_bridge
2. https://wiki.documentfoundation.org/Development/Gsoc/Ideas
3. http://cgit.freedesktop.org/libreoffice/core/tree/bridges/source/jni_uno?
id=fa97b8ac234c34618d8dca4329bc13e8454b47b4
4. http://cgit.freedesktop.org/libreoffice/core/tree/binaryurp?
id=fa97b8ac234c34618d8dca4329bc13e8454b47b4
5. http://www.openoffice.org/udk/common/man/typesystem.html
6. http://www.openoffice.org/udk/common/man/lifecycle.html
7.https://wiki.openoffice.org/wiki/Uno/Remote/Specifications/Uno_Remote_Protocol
8. http://www.openoffice.org/udk/common/man/uno_the_idea.html
9. https://wiki.openoffice.org/wiki/Uno/Article/Understanding_Uno
10. http://www.haskell.org/haskellwiki/Haskell
11. https://wiki.openoffice.org/wiki/PyUNO_samples

https://wiki.openoffice.org/wiki/PyUNO_bridge
https://wiki.openoffice.org/wiki/PyUNO_samples
http://www.haskell.org/haskellwiki/Haskell
https://wiki.openoffice.org/wiki/Uno/Article/Understanding_Uno
http://www.openoffice.org/udk/common/man/uno_the_idea.html
https://wiki.openoffice.org/wiki/Uno/Remote/Specifications/Uno_Remote_Protocol
http://www.openoffice.org/udk/common/man/lifecycle.html
http://www.openoffice.org/udk/common/man/typesystem.html
http://cgit.freedesktop.org/libreoffice/core/tree/binaryurp?id=fa97b8ac234c34618d8dca4329bc13e8454b47b4
http://cgit.freedesktop.org/libreoffice/core/tree/binaryurp?id=fa97b8ac234c34618d8dca4329bc13e8454b47b4
http://cgit.freedesktop.org/libreoffice/core/tree/bridges/source/jni_uno?id=fa97b8ac234c34618d8dca4329bc13e8454b47b4
http://cgit.freedesktop.org/libreoffice/core/tree/bridges/source/jni_uno?id=fa97b8ac234c34618d8dca4329bc13e8454b47b4
https://wiki.documentfoundation.org/Development/Gsoc/Ideas

